Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 243: 116064, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38492509

RESUMO

To analyze the metabolites (blood, urine and feces) in normal rats after intragastric administration of the decoction of Phellodendri Amurensis Cortex (PAC) and to map the metabolic profile of PAC in vivo of rat; meanwhile, to evaluate the anti-rheumatoid arthritis (RA) effect of PAC by blood metabolomics technique and to explore its mechanism. Performing on UPLC-Q-TOF-MS technology with a Waters ACQUITY UPLC BEH-C18 column (100 mm × 2.1 mm, 1.7 µm), the mobile phase was acetonitrile-0.1% formic acid aqueous solution (gradient elution). Prior to and following the administration of the decoction of PAC, the samples of blood, urine, and fecal were collected from the rats, in the positive ion mode, pharmacogenic metabolites in each biological sample were identified according to the accurate mass, fragment ions, retention time, metabolic reaction type, comparison of reference substance and retrieval of Pub Med database; The adjuvant-type arthritis (AA) rat model was established, and blood metabonomics method was used to study the improvement effect of rheumatoid arthritis after drug intervention with PAC, and its mechanism was preliminarily explored through analysis of metabolic pathway. A total of 72 exogenous components were identified, including 17 prototype components and 55 metabolites; 14 biomarkers were screened by blood metabolomics techniques combined with multivariate statistical analysis, and PAC significantly improved symptoms of rheumatoid arthritis in rats, and the metabolic pathway analysis mainly involves 5 metabolic pathways. The components in the aqueous decoction of PAC mainly undergo phase I metabolic reactions in rats, such as oxidation, reduction, dehydrogenation, demethylation, and phase II metabolic reactions, such as acetylation, glucuronidation, methylation; PAC has anti-rheumatoid arthritis effects, and its mechanism of action may be related to biosynthesis of aminoacyl-tRNA, metabolism of phenylalanine, metabolism of tryptophan, degradation of valine, leucine and isoleucine and biosynthesis of pantothenic acid and coenzyme A, providing a scientific basis for the study of the pharmacodynamic substances and the action mechanism of PAC against RA.


Assuntos
Artrite Reumatoide , Medicamentos de Ervas Chinesas , Phellodendron , Ratos , Animais , Phellodendron/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/farmacologia , Metabolômica , Metaboloma , Artrite Reumatoide/tratamento farmacológico
2.
J Environ Manage ; 355: 120449, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38432012

RESUMO

N-acyl homoserine lactones (AHLs) function as signaling molecules influencing microbial community dynamics. This study investigates the impact of exogenously applied AHLs on methane production during waste-activated sludge (WAS) anaerobic digestion (AD). Nine AHL types, ranging from 10-4 to 10 µg/g VSS, were applied, comparing microbial community composition under optimal AHL concentrations. Firmicutes, Bacteroidetes, Chloroflexi, and Proteobacteria were identified in anaerobic digesters with C4-HSL, C6-HSL, and C8-HSL. Compared to the control, Halobacterota increased by 19.25%, 20.87%, and 9.33% with C7-HSL, C10-HSL, and C12-HSL. Exogenous C7-HSL enhanced the relative abundance of Methanosarcina, Romboutsia, Sedimentibacter, Proteiniclasticum, Christensenellaceae_R-7_group. C10-HSL increased Methanosarcina abundance. C4-HSL, C6-HSL, C8-HSL, C10-HSL, and C12-HSL showed potential to increase unclassified_Firmicutes. Functional Annotation of Prokaryotic Taxa (FAPROTAX) predicted AHLs' impact on related functional genes, providing insights into their role in AD methanogenesis regulation. This study aimed to enhance the understanding of the influence of different types of exogenous AHLs on AD and provide technical support for regulating the methanogenesis efficiency of AD by exogenous AHLs.


Assuntos
4-Butirolactona , 4-Butirolactona/análogos & derivados , Acil-Butirolactonas , Acil-Butirolactonas/farmacologia , Anaerobiose , 4-Butirolactona/farmacologia , Esgotos , Lactonas
3.
Environ Sci Ecotechnol ; 21: 100393, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38357479

RESUMO

N,N-bis(carboxymethyl)-l-glutamate (GLDA) is an eco-friendly chelating agent that effectively extracts multivalent metal ions from waste activated sludge (WAS) flocs, which could potentially alter their structure. However, the effect of GLDA on the production of volatile fatty acids (VFAs) from WAS is not well known. Here, we demonstrate that pretreatment with GLDA at a concentration of 200 mmol per kg VSS results in a significant increase of 142% in extractable extracellular polymeric substances and enhances the total VFAs yield by 64% compared to untreated samples. We reveal GLDA's capability to mobilize organic-binding multivalent metal ions within sludge flocs. Specifically, post-pretreatment analyses showed the release of 69.1 mg L-1 of Ca and 109.8 mg L-1 of Fe ions from the flocs, leading to a more relaxed floc structure and a reduced apparent activation energy (10.6 versus 20 kJ mol-1) for WAS solubilization. Molecular dynamic simulations further demonstrate GLDA's preferential binding to Fe3+ and Ca2+ over Mg2+. Our study suggests that GLDA pretreatment causes minimal disruption to reactor stability, thereby indicating the stability of microbial community composition. GLDA has emerged as a viable pretreatment agent for enhancing volatile fatty acids production from waste activated sludge.

4.
Water Environ Res ; 96(2): e10994, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38351362

RESUMO

This study aimed to improve anaerobic digestion (AD) efficiency through the addition of zero-valent iron (ZVI) and biogas slurry. This paper demonstrated that methane production was most effectively promoted at a biogas slurry reflux ratio of 60%. The introduction of ZVI into anaerobic systems does not enhance its bioavailability. However, both biogas slurry reflux and the combination of ZVI with biogas slurry reflux increase the relative abundance of microorganisms involved in the direct interspecific electron transfer (DIET) process. Among them, the dominant microorganisms Methanosaeta, Methanobacterium, Methanobrevibacter, and Methanolinea accounted for over 60% of the total methanogenic archaea. The Tax4Fun function prediction results indicate that biogas slurry reflux and the combination of ZVI with biogas slurry reflux can increase the content of key enzymes in the acetotrophic and hydrotrophic methanogenesis pathways, thereby strengthening these pathways. The corrosion of ZVI promotes hydrogen production, and the biogas slurry reflux provided additional alkaline and anaerobic microorganisms for the anaerobic system. Their synergistic effect promoted the growth of hydrotrophic methanogens and improved the activities of various enzymes in the hydrolysis and acidification phases, enhanced the system's buffer capacity, and prevented secondary environmental pollution. PRACTITIONER POINTS: Optimal methane production was achieved at a biogas slurry reflux ratio of 60%. Biogas slurry reflux in anaerobic digestion substantially reduced discharge. ZVI addition in combination with biogas slurry reflux facilitates the DIET process.


Assuntos
Ferro , Esgotos , Anaerobiose , Esgotos/microbiologia , Biocombustíveis , Metano/metabolismo , Reatores Biológicos
5.
Environ Res ; 239(Pt 1): 117317, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37806475

RESUMO

The emergence of anaerobic ammonium oxidation (anammox) coupled to iron reduction (named Feammox) refreshes the microbial pathways for nitrogen (N) loss. However, the ecological role of Feammox, compared with conventional denitrification and anammox, in microbial N attenuation in ecosystems remains unclear. Here, the specific contribution of Feammox to N loss and the underlying microbiome interactive characteristics in a riparian ecosystem were investigated through 15N isotope tracing and molecular analysis. Feammox was highlighted in the riparian interface soils and maximally contributed 14.2% of N loss. Denitrification remained the dominant contributor to N loss (68.0%-95.3%), followed by anammox (5.7%-19.1%) and Feammox (0-14.2%). The rates of Feammox and anammox significantly decreased in rhizosphere soils (0.15 ± 0.08 µg N g-1 d -1 for Feammox, 0.80 ± 0.39 µg N g-1 d -1 for anammox) compared with those in non-rhizosphere soils; however, the activities of denitrification remarkably increased in the rhizosphere (13.17 ± 3.71 µg N g-1 d -1). In rhizosphere soils, the competition between bioavailable organic matter (e.g., amino acids and carbohydrates) and ammonium for electron acceptor [i.e., Fe(III)] was the vital inducement for restricted Feammox, while the nitrite consumption boosted by heterotrophic denitrifiers was responsible for weakened anammox. The functional gene of autotrophic Acidimicrobiaceae bacterium A6, instead of heterotrophic Geobacteraceae spp., was significantly positively correlated with Feammox activity. Rare iron-reducing bacteria showed higher node degrees in the non-rhizosphere network than in the rhizosphere network. A syntrophic relationship was found between iron-reducing bacteria (e.g., Anaeromyxobacter, Geobacter) and iron-oxidizing bacteria (e.g., Sideroxydans) in the non-rhizosphere network and facilitated the Feammox pathway. This study provides an in-depth exploration of microbial driven N loss in a riparian ecosystem and introduces new insights into riparian management practices toward high-efficient N pollution alleviation.


Assuntos
Compostos de Amônio , Compostos Férricos , Oxidação Anaeróbia da Amônia , Ecossistema , Rizosfera , Nitrogênio/análise , Oxirredução , Bactérias/genética , Bactérias/metabolismo , Anaerobiose , Compostos de Amônio/química , Compostos de Amônio/metabolismo , Solo/química , Ferro/química
6.
Chemosphere ; 341: 139931, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37669717

RESUMO

This study sought to investigate the relationship between N-acyl homoserine lactones (AHLs) and methanogenic microorganisms, focusing on endogenous AHLs in the anaerobic digestion (AD) process. By analyzing waste activated sludge (WAS) samples, we examine the changes in microbial communities and the AHLs-methanogens connection. The Mantel test and Spearman correlation analysis were conducted to gain novel insights into the AD process. Our findings demonstrate that thermal hydrolysis pretreatment (THP) modifies AHL concentrations during AD, thereby enhancing methanogenic bacteria activity and regulating social interactions among microorganisms. In the Eth group (AD of THP samples labeled Eth), Methanobacterium and Methanosarcina accounted for over 80% of the methanogenic bacteria, with correlation coefficients greater than 0.5 between these bacterial taxa and N-hexyl-l-homoserine lactone (C6-HSL) and N-enanthyl-l-homoserine lactone (C7-HSL).


Assuntos
Acil-Butirolactonas , Esgotos , Anaerobiose , Hidrólise
7.
J Sep Sci ; 46(17): e2300151, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37449326

RESUMO

The chemical constituents from Phellodendron amurense Rupr. were characterized systematically by ultra-performance liquid chromatography-quadrupole-time-of-flight-mass spectrometry method for collecting mass spectrometry data, and the fingerprints method was established, providing reference for its quality control. The chromatographic column was ACQUITY UPLC BEH-C18 (100 mm×2.1 mm, 1.7 µm). The mobile phase was acetonitrile-0.1% formic acid aqueous solution and the compounds from P. amurense Rupr. were identified by Qualitative Analysis 10.0 software, reference substance, retention time, mass spectrometry fragmentation pattern and database retrieval. Meanwhile, liquid chromatography-mass spectrometry fingerprint methods of P. amurense Rupr. and Phellodendron chinense Schneid. were established by using the similarity evaluation system of chromatographic fingerprint of traditional Chinese medicine (2012 edition), and the differences were analyzed by multivariate statistical analysis methods. A total of 105 compounds were identified, including 102 alkaloids, two phenolic acids, and one lactone compound. Liquid chromatography-mass spectrometry fingerprint method was established with ideal precision, stability and repeatability, and 12 quality differential markers were recognized between the above two herbs. Liquid chromatography-mass spectrometry method can be used for qualitative analysis of the constituents of Phellodendron amurense Rupr., providing reference for clarifying the material basis and promoting the clinical precision medication and quality evaluation of P. amurense Rupr.


Assuntos
Medicamentos de Ervas Chinesas , Phellodendron , Phellodendron/química , Cromatografia Líquida de Alta Pressão/métodos , Medicamentos de Ervas Chinesas/análise , Espectrometria de Massas/métodos , Cromatografia Líquida
8.
Bioresour Technol ; 384: 129245, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37268088

RESUMO

This study investigated a novel method for enhancing methane production during anaerobic digestion of waste activated sludge with digested sludge-derived biochar (DSBC). Using response surface methodology, the following process conditions for DSBC synthesis were optimized: heating rate = 13.23 °C/min, pyrolysis temperature = 516 °C, and heating time = 192 min. DSBC significantly enhanced the methane production by 48 % and improved key coenzyme activity that accelerated the bioconversion of organic matter while promoting the decomposition and transformation of volatile fatty acids. Consequently, the lag period of methane production was shortened to 4.89 days, while the average proportion of methane greatly increased to 73.22%. Thus, DSBC could facilitate efficient methanogenesis in the anaerobic system by promoting electron transfer between syntrophic partners through the charge-discharge cycle of surface oxygen-containing functional groups. The study provides a reference for the resource utilization of anaerobic sludge residues and efficient anaerobic methanogenesis from sludge.


Assuntos
Reatores Biológicos , Esgotos , Esgotos/química , Anaerobiose , Metano
9.
Sci Total Environ ; 885: 163759, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37146803

RESUMO

Improving the anaerobic fermentation (AF) efficiency of excess sludge (ES) is essential for attaining biosolid minimization, stabilization, resource recovery, and carbon-emission reduction. Along these lines, here, the synergistic mechanism of protease and lysozyme for enhancing hydrolysis and AF efficiency with better recovery of volatile fatty acids (VFAs) was thoroughly investigated. Single lysozyme was capable of reducing the zeta potential and fractal dimension when dosed into the ES-AF system, which was beneficial for increasing the contact probability between proteases and extracellular proteins. Moreover, the weight-averaged molecular weight of the loosely-bound extracellular polymeric substance (LB-EPS) reduced from 1867 to 1490 in the protease-AF group, which facilitated the penetration of EPS by the lysozyme. The soluble DNA and extracellular DNA (eDNA) of the enzyme cocktail pretreated group increased by 23.24 % and 77.09 %, and the cell viability decreased after 6-hour hydrolysis, demonstrating a better hydrolysis efficiency. Remarkably, the asynchronous dosed enzyme cocktail pretreatment was proven a better strategy to enhance both the solubilization and hydrolysis processes since the synergistic effect of these two enzymes can exclude the mutual interference. As a result, the VFAs were increased by 1.26 times higher than the blank group. The underlying mechanism of an environmental-friendly and effective strategy was examined to promote ES hydrolysis and acidogenic fermentation, which was beneficial for the recovery of VFAs and carbon-emission reduction.


Assuntos
Peptídeo Hidrolases , Esgotos , Fermentação , Peptídeo Hidrolases/metabolismo , Muramidase/metabolismo , Matriz Extracelular de Substâncias Poliméricas/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Endopeptidases , Ácidos Graxos Voláteis/metabolismo
10.
Water Res ; 236: 119974, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37084579

RESUMO

Anaerobic biological treatment was regarded as one of promising options for realizing concurrent WAS reduction, stabilization and bioenergy/bioresource recycle. But the relatively low treatment efficiency limited its spreading application toward larger scale considerably in China. Aimed at such barrier, this study offered a novel enhancing strategy for achieving high-efficiency of bioenergy/bioresource recycle from WAS anaerobic treatment via improving bioelectrogenesis/acidogenesis using sludge source-redox mediators (SSRMs). SSRMs not only facilitated bioeletrogenesis with an increasing efficiency of 36% for voltage output and 39% for bioelectricity bioconversion, but also enhanced acidogenesis of WAS with a mean elevating efficiency of 37.5% of volatile fatty acids (VFAs) production within 5 d Mechanistic investigations indicated that SSRMs had a potential influence on improving the protein and carbohydrate metabolisms-related genes' expression for enhancing bioelectrogenesis and acidogenesis. Moreover, SSRMs exerted roles of electrochemical "catalysts" or as terminal electron acceptors with affecting functional proteins of complexes of Ⅰ and Ⅳ in electron transfer chains for improving electron transfer efficiency. Meanwhile, the core members' abundance, microbial diversity and community distributive evenness were prompted concurrently for carrying out superior bioelectrogenesis and acidogenesis. A schematic illustration was established for demonstrating the mechanism of SSRMs for enhancing bioelectrogenesis and acidogenesis via changing microbial metabolism functions, enhancing electron transfer efficiency, and regulating functional genes' expression of functional proteins (up-regulating cytochrome c oxidase and down-regulating-NADH dehydrogenase). This study provided an effective enhancing strategy for facilitating WAS bioconversion to bioenergy/bioresource with well-process sustainability.


Assuntos
Ácidos Graxos Voláteis , Esgotos , Esgotos/química , Fermentação , Oxirredução , Proteínas , Anaerobiose , Concentração de Íons de Hidrogênio , Reatores Biológicos
11.
Anal Sci ; 39(8): 1349-1359, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37093556

RESUMO

This work presents the role of commercial microfiltration membranes combined with single particle inductively coupled plasma-mass spectrometry (SP-ICP-MS) in removing environmental matrix interference for model silver nanoparticles (AgNPs) determination. The filters with different pore sizes (0.22 µm, 0.45 µm, 0.8 µm) and materials (mixed cellulose ester, polyether sulfone, and nylon) were investigated to acquire the recovery of particle concentration and size of AgNPs spiked into different real aqueous solutions, including ultrapure water, tap water, surface water, and sewage effluent. The maximum recovery of nanoparticle concentration was 70.2% through the 0.8 µm polyether sulfone membrane. The heated filters were able to improve the recovery of AgNPs particle concentration in the real aqueous environment. Hence, the pretreatment method by SP-ICP-MS combined with filtration membrane was simple, fast, and low-cost to quantify AgNPs in natural water environments.

12.
Environ Res ; 216(Pt 2): 114593, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36252838

RESUMO

Aquaculture can substantially alter the accumulation and cycling of nutrients in sediments. However, the microbial mechanisms mediating sediment dissimilatory nitrate (NO3-) reduction in freshwater aquaculture ponds are still unclear, which rule the removal and retention of N element. In the present study, three microbial NO3- reduction processes in riparian aquaculture pond sediments (i.e., crab, shrimp and fish ponds) and natural freshwater sediments (i.e., lakes and rivers) were investigated via isotopic tracing and molecular analyses. The potential rates of denitrification, anaerobic ammonium oxidation (anammox) and dissimilatory nitrate reduction to ammonium (DNRA) significantly increased in the aquaculture ponds compared with the natural freshwaters. Denitrification contributed 90.40-94.22% to the total NO3- reduction (product as N2), followed by 2.49-5.82% of anammox (product as N2) and 2.09-5.18% of DRNA (product as NH4+). The availability of C and N substrates, rather than functional gene abundance, regulated the activities of NO3- reductions and microbiome composition. Microbial mechanism based on network analysis indicated that heterotrophic denitrifiers and DNRA bacteria (e.g., Bacillus, Micromonospora, Mycobacterium and Brachybacterium) determined the community structure and function for N conversions in aquaculture ponds, whereas the such microbial network in natural freshwater sediments was manipulated by autotrophic denitrifiers (e.g., Desulfuromonas, Polaromonas, Solitalea). Collectively, this study provides an in-depth exploration of microbial nitrogen removal in freshwater aquaculture areas and supports management strategies for N pollution caused by reclamation for aquaculture in riparian zones.


Assuntos
Compostos de Amônio , Nitratos , Animais , Nitratos/análise , Desnitrificação , Nitrogênio , Óxidos de Nitrogênio , Aquicultura , Lagos , Oxirredução
13.
J Environ Sci (China) ; 127: 824-832, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36522110

RESUMO

With a large amount of domestic sewage and industrial wastewater discharged into the water bodies, sulfur-containing organic matter in wastewater produced volatile organic sulfide, such as dimethyl trisulfide (DMTS) through microorganisms, caused the potential danger of drinking water safety and human health. At present, there is still a lack of technology on the removal of DMTS. In this study, the ultraviolet/peroxymonosulfate (UV/PMS) advanced oxidation processes was used to explore the degradation of DMTS. More than 90% of DMTS (30 µg/L) was removed under the conditions of the concentration ratio of DMTS to PMS was 3:40, the temperature (T) was 25 ± 2℃, and 10 min of irradiation by a 200 W mercury lamp (365 nm). The kinetics rate constant k of DMTS reacting with hydroxyl radical (HO·) was determined to be 0.2477 min-1. Mn2+, Cu2+ and NO3- promoted the degradation of DMTS, whereas humic acid and Cl- in high concentrations inhibited the degradation process. Gas chromatography-mass spectrometry was used to analyze the degradation products and the degradation intermediates were dimethyl disulfide and methanethiol. Density functional theory was used to predict the possible degradation mechanism according to the frontier orbital theory and the bond breaking mechanism of organic compounds. The results showed that the SS, CS and CH bonds in DMTS molecular structure were prone to fracture in the presence of free radicals, resulting in the formation of alkyl radicals and sulfur-containing radicals, which randomly combined to generate a variety of degradation products.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Humanos , Poluentes Químicos da Água/análise , Peróxidos/química , Sulfetos , Oxirredução , Enxofre
14.
Front Microbiol ; 13: 999647, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36458184

RESUMO

The conductive media was capable to enhance anaerobic digestion and promote direct interspecific electron transfer (DIET). In this study, the effects of activated carbon- and graphite-conductive media on promoting anaerobic digestion efficiency of waste activated sludge were experimentally studied. The results show that the 100 mesh-activated carbon group reactor produced a largest biogas yield of 468.2 mL/g VSS, which was 13.8% higher than the blank test. The graphite group reactor with 400-grain size produced a largest biogas yield of 462.9 mL/g VSS, which was 12.5% higher than the blank test. Moreover, the optimal particle size of such two carbon- conductive mediators were optimized for enhancing degradation efficiency of VSS, TCOD, total protein and total polysaccharide of waste sludge. Activated carbon was capable to promote the hydrolytic acidification stage in anaerobic digestion of waste sludge. When the particle size reduced to the optimal particle size, the promoting effect could be strengthened for producing more hydrolytic acidification products for methanogenesis. However, in the graphite group, the methane production is increased by promoting the consumption of hydrolysis and acidification products and is enhanced with the particle size reduction, thus promoting the methanogenesis process, and improving the anaerobic digestion efficiency. Microbial community analysis showed that both activated carbon and graphite cultivated the genera of Methanosaeta, Methanobacterium, Nitrososphaeraceae, which promoted the improvement of methane production through the acetate debris methanogenesis pathway.

15.
Water Res ; 226: 119287, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36323210

RESUMO

Enhancing anaerobic treatment efficiency of waste activated sludge (WAS) toward preferable resource recovery would be an important requirement for achieving carbon-emission reduction, biosolids minimization, stabilization and security concurrently. This study demonstrated the synergic effect of potassium ferrate (PF) and nitrite on prompting WAS solubilisation and acidogenic fermentation toward harvesting volatile fatty acids (VFAs). The results indicated the PF+NaNO2 co-pretreatment boosted 7.44 times and 1.32 times higher WAS solubilisation [peak soluble chemical oxygen demand (SCOD) of 2680 ± 52 mg/L] than that by the single nitrite- and PF-pretreatment, respectively, while about 2.77 times and 2.11 times higher VFAs production were achieved (maximum VFAs accumulation of 3536.25 ± 115.24 mg COD/L) as compared with the single pretreatment (nitrite and PF)-fermentations. Afterwards the WAS dewaterability was improved simultaneously after acidogenic fermentation. Moreover, a schematic diagram was established for illustrating mechanisms of the co-pretreatment of PF and nitrite for enhancing the VFAs generation via increasing key hydrolytic enzymes, metabolic functional genes expression, shifting microbial biotransformation pathways and elevating abundances of key microbes in acidogenic fermentation. Furthermore, the mechanistic investigations suggested that the PF addition was conducive to form a relatively conductive fermentation environment for enhancing electron transfer (ET) efficiency, which contributed to the VFAs biotransformation positively. This study provided an effective strategy for enhancing the biodegradation/bioconversion efficiency of WAS organic matters with potential profitable economic returns.


Assuntos
Nitritos , Esgotos , Fermentação , Concentração de Íons de Hidrogênio , Ácidos Graxos Voláteis , Ácidos
16.
Bioresour Technol ; 345: 126488, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34871722

RESUMO

Polyoxyethylene dehydration sorbitol monooleate (polysorbate-80) pretreatment enhanced volatile fatty acids (VFAs) production of waste activated sludge (WAS) in acidogenic fermentation. The results showed that polysorbate-80 ameliorated WAS solubilization obviously with a soluble chemical oxygen demand (SCOD) increasing to 1536 mg/L within 4 h. Within 2 days of acidogenic fermentation, the maximal VFAs arrived to 2958.35 mg COD/L via polysorbate-80-pretreatment. The polysorbate-80 pretreatment boosted microbial diversity and richness in fermentation process. The Clostridium, Macellibacteroides and Acidocella strengthened microbial cooperation for the metabolic functions enhancement (e.g. amino acid metabolism and carbohydrate metabolism) for VFAs generation from WAS organics. Overall, the polysorbate-80 could play positive roles on the transformation of organic matter from sludge solid matters to VFAs, which was turned out to become an effective enhancing strategy for future WAS treatment / bioresource recovery with relatively low cost.


Assuntos
Polissorbatos , Esgotos , Metabolismo dos Carboidratos , Ácidos Graxos Voláteis , Fermentação , Concentração de Íons de Hidrogênio , Interações Microbianas
17.
Water Res ; 209: 117897, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34861438

RESUMO

This study would investigate the effect of nano-Fe3O4 particles on the performance of membrane bioreactor (MBR), including membrane fouling, membrane rejection and microbial community. It can effectively alleviate membrane fouling and improve the effluent quality in MBR by bio-effect rather than nanoparticle adsorption. The lowest membrane fouling resistance was achieved at R4-MBR (sludge and membrane surface with nano-Fe3O4), which decreased by 46.08%. Meanwhile, R3-MBR (sludge with nano-Fe3O4) had the lowest concentration of COD in effluent which was below 20 mg/L in the stable phase of MBR operation. After applying nano-Fe3O4, the content of extracellular polymeric substances (EPS) and soluble microbial products (SMP) were both reduced with a lower molecular weight. From the microbial community analysis, the abundance of Proteobacteria increased from 25.06 to 45.11% at the phylum level in R3-MBR. It contributed to removing organic substances in MBRs. Moreover, the nano-Fe3O4 restricted Bacteroidetes growth, especially in R4-MBR, leading to a more excellent performance of membrane flux. Besides, the applied nano-Fe3O4 promoted the abundance of Quorum Quenching (QQ) microorganism, and declined the percentage of Quorum Sensing (QS) bacteria. Then, a lower content of N-Acyl-l-Homoserine Lactones (AHLs) in containing nano-Fe3O4 sludge. That was also prone to control membrane fouling. Overall, this study indicates the nano-Fe3O4 particle is appropriate for elevating MBR performance, such as membrane fouling and effluent quality, by bio-effect.

18.
J Genet Genomics ; 48(6): 485-496, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-34257043

RESUMO

Meiotic recombination is essential for reciprocal exchange of genetic information between homologous chromosomes and their subsequent proper segregation in sexually reproducing organisms. MLH1 and MLH3 belong to meiosis-specific members of the MutL-homolog family, which are required for normal level of crossovers (COs) in some eukaryotes. However, their functions in plants need to be further elucidated. Here, we report the identification of OsMLH1 and reveal its functions during meiosis in rice. Using CRISPR-Cas9 approach, two independent mutants, Osmlh1-1 and Osmlh1-2, are generated and exhibited significantly reduced male fertility. In Osmlh1-1, the clearance of PAIR2 is delayed and partial ZEP1 proteins are not loaded into the chromosomes, which might be due to the deficient in resolution of interlocks at late zygotene. Thus, OsMLH1 is required for the assembly of synapsis complex. In Osmlh1-1, CO number is dropped by ~53% and the distribution of residual COs is consistent with predicted Poisson distribution, indicating that OsMLH1 is essential for the formation of interference-sensitive COs (class I COs). OsMLH1 interacts with OsMLH3 through their C-terminal domains. Mutation in OsMLH3 also affects the pollen fertility. Thus, our experiments reveal that the conserved heterodimer MutLγ (OsMLH1-OsMLH3) is essential for the formation of class I COs in rice.


Assuntos
Troca Genética , Meiose/genética , Proteínas MutL/metabolismo , Oryza/genética , Pareamento Cromossômico , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Flores/citologia , Flores/genética , Flores/metabolismo , Proteína 1 Homóloga a MutL/genética , Proteína 1 Homóloga a MutL/metabolismo , Proteínas MutL/genética , Mutação , Oryza/citologia , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica
19.
Bioresour Technol ; 337: 125452, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34186332

RESUMO

This first-attempt study illustrated the microbial cooperative interactions related to bioelectricity generation from the mixture of sludge fermentation liquid (SFL) and fruit waste extracts (FWEs) via microbial fuel cells (MFCs). The optimal output voltages of 0.65 V for SFL-MFCs, 0.51 V for FWEs-MFCs and 0.75 V for mixture-MFCs associated with bioelectricity conversion efficiencies of 1.061, 0.718 and 1.391 kWh/kg COD were reached, respectively. FWEs addition for substrates C/N ratio optimization contributed considerably to increase SFL-fed MFCs performance via triggering a higher microbial diversity, larger relatively abundance of functional genes and microbial synergistic interactions with genera enrichment of Clostridium, Alicycliphilus, Thermomonas, Geobacter, Paludibaculum, Pseudomonas, Taibaiella and Comamonas. Furthermore, a conceptual illustration of co-locating scenario of wastewater treatment plant(s), waste sludge in situ acidogenic fermentation, fruit waste collection/crushing station and MFC plant was proposed for the first time, which provided new thinking for future waste sludge treatment toward maximizing solid reduction and power recovery.


Assuntos
Fontes de Energia Bioelétrica , Eletricidade , Eletrodos , Fermentação , Frutas , Extratos Vegetais , Esgotos , Águas Residuárias
20.
Chemosphere ; 280: 130939, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34162110

RESUMO

To avoid the generally deteriorated dewaterability of sludge in waste activated sludge (WAS) anaerobic acidogenesis, the combination of varied calcium oxide (CaO) dosage (i.e., 0.01-0.07 g/g TS) and freezing/thawing pretreatment (5 F/T cycles) was investigated for concurrently improving the production of volatile fatty acids (VFAs) and dewatering performance of sludge. The highest release of soluble chemical oxygen demand (SCOD) (1836 ± 96 mg/L) and accumulation of VFAs (448.0 mg COD/g VS) were reached through the co-pretreatment of CaO (0.07 g/g TS) and F/T (50 h at -24 °C) (i.e., 0.07 CaO-F/T). Meanwhile, optimal dewaterability of sludge was also achieved in 0.07 CaO-F/T co-pretreated WAS fermentation, which was reflected by large particle size (98.32 µm), low capillary suction time (41.6 s), decreased specific resistance to filtration (SRF, reduced 47.5% against blank) and high zeta potential (-9.59 mV). Co-pretreatment of CaO and F/T reduced the species number of total microbial population, but improved the abundance of acid-producing bacteria. Increased abundance of Bacteroides, Macellibacteroides, Petrimonas, Prevotella, Clostridium, and Megasphaera was positively relevant to the high yields of VFAs. The economic analysis indicated that CaO-F/T was economically acceptable with considerable estimated net profits, which provided a feasible and efficient alternative for further WAS treatment at large scale.


Assuntos
Ácidos Graxos Voláteis , Esgotos , Anaerobiose , Compostos de Cálcio , Fermentação , Congelamento , Concentração de Íons de Hidrogênio , Óxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...